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ABSTRACT

We present Tony, a software tool for the interactive an-
notation of melodies from monophonic audio recordings,
and evaluate its usability and the accuracy of its note ex-
traction method. The scientific study of acoustic perfor-
mances of melodies, whether sung or played, requires the
accurate transcription of notes and pitches. To achieve
the desired transcription accuracy for a particular applica-
tion, researchers manually correct results obtained by au-
tomatic methods. Tony is an interactive tool directly aimed
at making this correction task efficient. It provides (a)
state-of-the art algorithms for pitch and note estimation,
(b) visual and auditory feedback for easy error-spotting,
(c) an intelligent graphical user interface through which
the user can rapidly correct estimation errors, (d) extensive
export functions enabling further processing in other ap-
plications. We show that Tony’s built in automatic note
transcription method compares favourably with existing
tools. We report how long it takes to annotate record-
ings on a set of 96 solo vocal recordings and study the
effect of piece, the number of edits made and the anno-
tator’s increasing mastery of the software. Tony is Open
Source software, with source code and compiled bina-
ries for Windows, Mac OS X and Linux available from
https://code.soundsoftware.ac.uk/projects/tony/.

1. INTRODUCTION

Our goal is to make the scientific annotation of melodic
content, and especially the estimation of note pitches in
singing, more efficient. A number of well-known digi-
tal signal processing methods have been successfully ap-
plied to measuring singing pitch precisely and unambigu-
ously, e.g. [1,2]. While their accuracy is sufficient for
many applications, arriving at a satisfactory annotation of-
ten requires significant manual adjustment on the part of
the researcher. This need for adjustment is even more pro-
nounced when the aim is to transcribe discrete notes. Per-
forming such adjustments take much time and effort, espe-
cially in the absence of a user-friendly interface.

The main contributions of this paper are (1) the presen-
tation of the Tony user interface aimed at streamlining the

Copyright: c© 2015 Matthias Mauch et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited (CC-BY).

software URL

Tony https://code.soundsoftware.

ac.uk/projects/tony

pYIN https://code.soundsoftware.

ac.uk/projects/pyin

Pitch Estimator https://code.soundsoftware.

ac.uk/projects/chp

Sonic Visualiser
Libraries

https://code.soundsoftware.

ac.uk/projects/sv

Table 1: Software availability.

melody annotation process, (2) the new note transcription
algorithm it uses (implemented in the pYIN Vamp plugin),
and (3) an evaluation of Tony’s utility in terms of note tran-
scription accuracy and the effort required for note annota-
tion in a real-world use case. Features and design described
in this paper reflect Tony version 1.0 except where noted.

2. BACKGROUND

Music informatics researchers, music psychologists and
anyone interested in the analysis of pitch and intonation
routinely use software programs to annotate and transcribe
melodies in audio recordings. The two main objects of in-
terest are the pitch track, which traces the fundamental fre-
quency (F0) contours of pitched sounds in smooth, contin-
uous lines, and the note track, a sequence of discrete note
events that roughly correspond to notes in a musical score.
In order to find out which tools are used we conducted an
online survey that was sent out through several channels
including the ISMIR Community, Auditory and music-dsp
mailing lists. 1

We obtained 31 responses with a strong bias towards re-
searchers in music informatics (see Table 2). Most of the
participants were from academic institutions (27; 87%),
of which students were the greatest contingent (11; 35%).
Four participants were from industry (13%). Experience
with pitch and note representations was nearly evenly dis-
tributed (58% and 52%, respectively, including those who
had experience with both kinds of annotation).

We asked the participants which tools they are aware of.
Responses included a large variety of tools, which we sep-
arated into user-interface-based software and signal pro-

1 The survey questions are given in Appendix A.
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Field of work Position

Music Inf./MIR 17 (55%) Student 11 (35%)
Musicology 4 (13%) Faculty Member 10 (32%)
Bioacoustics 3 (10%) Post-doc 6 (19%)
Speech Processing 2 (5%) Industry 4 (13%)

Experience

Pitch track 18∗ (58%)
Note track 16∗ (52%)
Both 7 (23%)
None 3 (10%)

∗) includes 7 who had experience with both pitch and note tracks.

Table 2: Participants of the survey. Top four responses for
participant makeup.

cessing software without user interfaces (see Box 1). 2

The tools with graphical user interfaces mentioned by
survey participants were: Sonic Visualiser (12 partic-
ipants), Praat (11), Custom-built (3), Melodyne (3),
Raven (and Canary) (3), Tony (3), WaveSurfer (3),
Cubase (2), and the following mentioned once: Au-
dioSculpt, Adobe Audition, Audacity, Logic, Sound
Analysis Pro, Tartini and Transcribe!.
The DSP algorithms mentioned by survey participants
were: YIN (5 participants), Custom-built (3), Aubio
(2), and all following ones mentioned once: AMPACT,
AMT, DESAM Toolbox, MELODIA, MIR Toolbox,
Tartini, TuneR, SampleSumo, silbido, STRAIGHT and
SWIPE.

Box 1: Survey Results.

Our first observation is that despite the wide range of
tools, there are some that were mentioned many more
times than others: in the case of user interfaces these are
Sonic Visualiser [3] 3 and Praat [4] 4 , and in the case of
DSP tools it is YIN [5]. None of the tools with user in-
terfaces are specifically aimed at note and pitch transcrip-
tion in music; some were originally aimed at the analy-
sis of speech, e.g. Praat, others are generic music anno-
tation tools, e.g. Sonic Visualiser and AudioSculpt [6]. In
either case, the process of extracting note frequencies re-
mains laborious and can take many times the duration of
the recording. As a consequence, many researchers use
a chain of multiple tools in custom setups in which some
parts are automatic (e.g. using AMPACT alignment [7]), as
we have previously done ourselves [8]. Commercial tools
such as Melodyne, 5 Songs2See 6 and Sing&See 7 serve
similar but incompatible purposes. Melodyne in particular
offers a very sleek interface, but frequency estimation pro-
cedures are not public (proprietary code), notes cannot be
sonified, and clear-text export of note and pitch track data
is not provided.

2 We are furthermore aware of tools for pitch track annotation [1] and
pitch track and note annotation [2] that are not publicly available.

3 http://www.sonicvisualiser.org/
4 http://www.fon.hum.uva.nl/praat/
5 http://www.celemony.com/
6 http://www.songs2see.com/
7 http://www.singandsee.com/

In summary, the survey further corroborated the impres-
sion gained during our own experiments on note intona-
tion: a tool for efficient annotation of melodies is not avail-
able, and the apparent interest in the scientific study of
melody provides ample demand to create just such a tool.
We therefore set out to create Tony, a tool that focusses
on melodic annotation (as opposed to general audio anno-
tation or polyphonic note annotation). The Tony tool is
aimed at providing the following components: (a) state-of-
the art algorithms for pitch and note estimation with high
frequency resolution, (b) graphical user interface with vi-
sual and auditory feedback for easy error-spotting, (c) in-
telligent interactive interface for rapid correction of estima-
tion errors, (d) extensive export functions enabling further
processing in other applications. Lastly, the tool should be
freely available to anyone in the research community, as it
already is (see Table 1). This paper demonstrates that the
remaining requirements have also been met.

Any modern tool for melody annotation from audio re-
quires signal processing tools for pitch (or fundamental
frequency, F0) estimation and note transcription. We are
concerned here with estimation from monophonic audio,
not with the estimation of the predominant melody from
a polyphonic mixture (e.g. [9, 10]). Several solutions to
the problem of F0 estimation have been proposed, includ-
ing mechanical contraptions dating back as far as the early
20th century [11]. Recently, the area of speech process-
ing has generated several methods that have considerably
advanced the state of the art [4, 5, 12, 13]. Among these,
the YIN fundamental frequency estimator [5] has gained
popularity beyond the speech processing community, es-
pecially in the analysis of singing [14,15] (also, see survey
above). Babacan et al. [16] provide an overview of the per-
formance of F0 trackers on singing, in which YIN is shown
to be state of the art, and particularly effective at fine pitch
recognition. More recently, our own pYIN pitch track es-
timator has been shown to be robust against several kinds
of degradations [17] and to be one of the most accurate
pitch transcribers, especially for query-by-singing applica-
tions [18] (alongside the MELODIA pitch tracker [10]).

The transcription of melodic notes has received far less
attention than pitch tracking—perhaps because polyphonic
note transcription [19, 20] was deemed the more exciting
research problem—but several noteworthy methods exist
[2, 21, 22]. We have implemented our own note transcrip-
tion method intended for use in Tony, of which a previous
version has been available as part of the pYIN Vamp plu-
gin [17]. This is the first time pYIN note transcription has
been presented and evaluated in a scientific paper.

3. METHOD

Tony implements several melody estimation methods:
fully automatic pitch estimation and note tracking based
on pYIN [17], and custom methods for interactive re-
estimation. Tony resamples any input file to a rate of
44.1 kHz (if necessary), and the signal processing meth-
ods work on overlapping frames of 2048 samples (≈46 ms)
with a hop size of 256 samples (≈6 ms).

http://www.sonicvisualiser.org/
http://www.fon.hum.uva.nl/praat/
http://www.celemony.com/
http://www.songs2see.com/
http://www.singandsee.com/


(a) Excerpt of the pYIN note transition network.
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(b) Central part of the note transition probability function.

Figure 1: Transition model in pYIN note transcription module.

3.1 Pitch Estimation

We use the existing probabilistic YIN (pYIN) method [17]
to extract a pitch track from monophonic audio recordings.
The pYIN method is based on the YIN algorithm [5]. Con-
ventional YIN has a single threshold parameter and pro-
duces a single pitch estimate. The first stage of pYIN cal-
culates multiple pitch candidates with associated probabil-
ities based on a distribution over many threshold parame-
ter settings. In a second stage, these probabilities are used
as observations in a hidden Markov model, which is then
Viterbi-decoded to produce an improved pitch track. This
pitch track is used in Tony, and is also the basis for the note
detection algorithm described below.

3.2 Note Transcription

The note transcription method takes as an input the pYIN
pitch track and outputs discrete notes on a continuous pitch
scale, based on Viterbi-decoding of a second, independent
hidden Markov model (HMM). Unlike other similar mod-
els, ours does not quantise the pitches to semitones, but
instead allows a more fine-grained analysis. The HMM
models pitches from MIDI pitch 35 (B1, ≈61 Hz) to MIDI
pitch 85 (C]6, ≈ 1109 Hz) at 3 steps per semitone, result-
ing in n = 207 distinct pitches. Following Ryynänen [21]
we represent each pitch by three states representing attack,
stable part and silence, respectively. The likelihood of a
non-silent state emitting a pitch track frame with pitch q is
modelled as a Gaussian distribution centered at the note’s
pitch p with a standard deviation of σ semitones, i.e.

P (np|q) = v ·
(
1

z
[φp,σ(q)]

τ

)
(1)

where np is a state modelling the MIDI pitch p, z is
a normalising constant and the parameter 0 < τ < 1
controls how much the pitch estimate is trusted; we set
τ = 0.1. The probability of unvoiced states is set to
P (unvoiced|q) = (1 − v)/n, i.e. they sum to their com-
bined likelihood of (1 − v) and v = 0.5 is the prior like-
lihood of a frame being voiced. The standard deviation σ
varies depending on the state: attack states have a larger
standard deviation (σ = 5 semitones) than stable parts

(σ = 0.9). This models that the beginnings of notes and
note transitions tend to vary more in pitch than the main,
stable parts of notes.

The transition model imposes continuity and reasonable
pitch transitions. Figure 1a shows a single note model,
with connections to other notes. Within a note we use a
3-state left-to-right HMM consisting of Attack, Stable and
Silent states. These states are characterised by high self-
transition probability (0.9, 0.99 and 0.9999 for the three
note states, respectively), to ensure continuity. Within a
note, the only possibility other than self-transition is to
progress to the next state. The last note state the Silent
state, allows transitions to many different Attack states of
other notes. Like the musicological model in Ryynänen
and Klapuri’s approach [21] we provide likelihoods for
note transitions. Unlike their approach, we do not deal
with notes quantised to the integer MIDI scale, and so we
decided to go for a simpler heuristic that would only take
into account three factors: (1) a note’s pitch has to be either
the same as the preceding note or at least 2/3 semitones dif-
ferent; (2) small pitch changes are more likely than larger
ones; (3) the maximum pitch difference between two con-
secutive notes is 13 semitones. A part of the transition
distribution to notes with nearby pitches is illustrated in
Figure 1b.

3.3 Note Post-processing

We employ two post-processing steps. The first,
amplitude-based onset segmentation helps separate con-
secutive notes (syllables) of similar pitches as follows. We
calculate the root mean square (RMS, i.e. average) ampli-
tude denoted by ai in every frame i. In order to estimate
the amplitude rise around a particular frame i we calculate
the ratio of the RMS values between the frames either side

r =
ai+1

ai−1
(2)

Given a sensitivity parameter s, any rise with 1/r < s is
considered part of an onset, 8 and the frame i − 2 is set
to unvoiced, thus creating a gap within any existing note.

8 The inverse 1/r is used in order for s to correspond to sensitivity.



waveform

notes (blue) and
pitch track

spectrogram
toggle

main pane

tool choice

overview

candidate
pitch track

selection
strip

show, play, gain/pan elements for... audio

︸ ︷︷ ︸
pitch track

︸ ︷︷ ︸
notes

︸ ︷︷ ︸
Figure 2: Graphical User Interface with key elements highlighted.

If no note is present, nothing changes, i.e. no additional
notes are introduced in this onset detection step. The sec-
ond post-processing step, minimum duration pruning, sim-
ply discards notes shorter than a threshold, usually chosen
around 100 ms.

3.4 Semi-automatic Pitch Track Re-estimation

In addition to fully manual editing of notes (Section 3.4.2),
the user can also change the pitch track. However, since
human beings do not directly perceive pitch tracks, Tony
offers pitch track candidates which users can choose from.
Two methods are available: multiple alternative pYIN
pitch tracks on a user-selected time interval, and a single
pitch track on a user-selected time-pitch rectangle.

3.4.1 Multiple pYIN pitch tracks

In order to extract multiple pitch tracks, the pYIN method
is modified such that its second stage runs multiple times
with different frequency ranges emphasised. The intended
use of this is to correct pitches over short time intervals. As
in the default version, the first pYIN stage extracts multiple
pitch candidates mi (given in floating point MIDI pitches)
for every frame, with associated probabilities pi. Depend-
ing on the frequency range, these candidate probabilties
are now weighted by a Gaussian distribution centered at
cj = 48 + 3 × j, j = 1, . . . , 13, for the jth frequency
range, i.e. the new candidate pitch probabilities are

pij = pi × φcj ,σr
(mi), (3)

where φ(·) is the Gaussian probability density function and
σr = 8 is the pitch standard deviation, indicating the fre-
quency width of the range. With these modified pitch prob-
abilities, the Viterbi decoding is carried out as usual, lead-
ing to a total of 13 pitch tracks.

Finally, duplicate pitch tracks among those from the 13
ranges are eliminated. Two pitch tracks are classified as
duplicates if at least 80% of their pitches coincide. Among
each duplicate pair, the pitch track with the shorter time
coverage is eliminated.

3.4.2 Pitch track in time-pitch rectangle

In some cases, the desired pitch track is not among those
offered by the method described in Section 3.4.1. In such
cases we use a YIN-independent method of finding pitches
based on a simple harmonic product spectrum [23]. When
using this method, the user provides the pitch and time
range (a rectangle), and for every frame the method re-
turns the pitch with the maximum harmonic product spec-
tral value (or no pitch, if the maximum occurs at the upper
or lower boundary of the pitch range). This way even sub-
tle pitches can be annotated provided that they are local
maxima of the harmonic product spectrum.

4. USER INTERFACE

Figure 2 is a screenshot of the Tony user interface. The
basic interface components as well as the underlying audio
engine and other core components are well tested as they
come from the mature code base of Sonic Visualiser (see
also Table 1). Tony differs from the other tools in that it
is designed for musical note sequences, not general pitch
events, and intentionally restricted to the annotation of sin-
gle melodies. This specialisation has informed many of our
design choices. Below we highlight several key aspects of
the Tony interface.

4.1 Graphical Interface

While graphical interface components from Sonic Visu-
aliser have been re-used, the focus on a single task has al-



Group.1 Overall. Acc. Raw. Pitch. Acc. Vo. False Alarm Vo. Recall F COnPOff F COnP F COn
1 melotranscript 0.80 0.87 0.37 0.97 0.45 0.57 0.63
2 ryynanen 0.72 0.76 0.37 0.94 0.30 0.47 0.64
3 smstools 0.80 0.88 0.41 0.99 0.39 0.55 0.66
4 pYIN s=0.0, prn=0.00 0.83 0.91 0.37 0.98 0.38 0.56 0.61
5 pYIN s=0.0, prn=0.07 0.84 0.91 0.34 0.98 0.40 0.59 0.64
6 pYIN s=0.0, prn=0.10 0.84 0.91 0.33 0.97 0.41 0.60 0.64
7 pYIN s=0.0, prn=0.15 0.84 0.90 0.32 0.96 0.41 0.60 0.63
8 pYIN s=0.6, prn=0.00 0.84 0.91 0.35 0.98 0.38 0.56 0.61
9 pYIN s=0.6, prn=0.07 0.84 0.91 0.32 0.97 0.43 0.62 0.67

10 pYIN s=0.6, prn=0.10 0.85 0.91 0.31 0.97 0.44 0.62 0.67
11 pYIN s=0.6, prn=0.15 0.85 0.90 0.29 0.95 0.44 0.62 0.65
12 pYIN s=0.7, prn=0.00 0.83 0.90 0.33 0.97 0.39 0.54 0.61
13 pYIN s=0.7, prn=0.07 0.85 0.91 0.30 0.97 0.46 0.63 0.69
14 pYIN s=0.7, prn=0.10 0.85 0.90 0.29 0.96 0.47 0.64 0.69
15 pYIN s=0.7, prn=0.15 0.85 0.89 0.27 0.94 0.47 0.64 0.67
16 pYIN s=0.8, prn=0.00 0.84 0.89 0.28 0.96 0.39 0.52 0.61
17 pYIN s=0.8, prn=0.07 0.85 0.89 0.25 0.95 0.48 0.66 0.73
18 pYIN s=0.8, prn=0.10 0.85 0.89 0.24 0.94 0.49 0.68 0.73
19 pYIN s=0.8, prn=0.15 0.85 0.87 0.22 0.91 0.50 0.67 0.71

Table 3: Results for fully-automatic melody note transcription.

lowed us to combine all relevant visualisation components
into a single pane: pitch track, note track, spectrogram and
the waveform. Visibilty of all can be toggled. The focus on
single melodies meant that we could design a special note
layer with non-overlapping notes. This averts possible an-
notation errors from overlapping pitches.

As soon as the user opens an audio file, melodic rep-
resentations of pitch track and notes are calculated using
the methods described in Sections 3.1 and 3.2. This con-
trasts with general tools like Praat, Sonic Visualiser or Au-
dioSculpt, which offer a range of processing options the
user has to select from. This is avoided in Tony, since the
analysis objective is known in advance. However, the user
has some control over the analysis parameters via the menu
and can re-run the analysis with the parameters changed.

Editing pitch tracks and notes is organised separately.
Note edits concern only the placement and duration of
notes in time, and their pitch is calculated on the fly as
the median of the underlying pitch track. Any corrections
in the pitch dimension are carried out via the pitch track.

In order to select pitches or notes the user selects a time
interval, either via the Selection Strip or via keyboard com-
mands. Both pitch track and note track can then be ma-
nipulated based on the selection. The most simple pitch
track actions are: choose higher/lower pitch (by octave) in
the selected area; remove pitches in the selected area. For
more sophisticated pitch correction, the user can request
alternative pitch tracks in a selected time interval (see Sec-
tion 3.4.1), or the single most likely pitch track in a time-
pitch rectangle (see Section 3.4.2). Note actions are: Split,
Merge, Delete, Create (including “form note from selec-
tion”), and Move (boundary). The note pitch is always the
median of the pitch track estimates it covers and is updated
in real-time.

4.2 Sound Interface

Tony provides auditory feedback by playing back the ex-
tracted pitch track as well as the note track alongside the
original audio. Like the visual pitch track and note repre-
sentations, playback (including that of the original record-
ing) can be toggled using dedicated buttons in a toolbar
(see Figure 2), giving users the choice to listen to any com-

bination of representations they wish.
Sonification of the notes is realised as a wave table play-

back of an electric piano sound. The sound was espe-
cially synthesised for its neutral timbre and uniform evolu-
tion. Unlike other programs, synthesis in Tony is not con-
strained to integer MIDI notes, and can sonify subtle pitch
differences as often occur in real-world performances. The
pitch track is synthesised on the fly, using a sinusoidal ad-
ditive synthesis of the first three harmonic partials.

5. EVALUATION

To assess the utility of Tony as a note transcription sys-
tem, we conducted two experiments. First, we compared
the underlying note transcription method to existing meth-
ods, using a publicly available dataset [24]. Second, in a
real-world task an expert annotated notes for an intonation
study using the Tony software, and we measured the time
taken and the number of notes manipulated. The experi-
mental results are given below.

5.1 Accuracy of Automatic Transcription

We used a test set of 38 pieces of solo vocal music (11
adult females, 13 adult males and 14 children) as col-
lected and annotated in a previous study [24]. All files
are sampled at 44.1 kHz. We also obtained note transcrip-
tion results extracted by three other methods: Melotran-
script [22], Gómez and Bonada [2], Ryynänen [21]. We
ran 16 different versions of Tony’s note transcription algo-
rithm, a grid search of 4 parameter settings for each of the
two post-processing methods. Minimum duration pruning
was parametrised to 0 ms (no pruning), 70 ms, 100 ms and
150 ms. The amplitude-based onset segmentation parame-
ter was varied as s = 0, 0.6, 0.7 and 0.8.

For frame-wise evaluation we used metrics from the eval-
uation of pitch tracks [25] as implemented in mir eval
[26], but applied them to notes by assigning to every frame
the pitch of the note it is covered by. The results are listed
in Table 3. The pYIN note transcriptions reach very high
overall accuracy rates (0.83–0.85) throughout. The high-
est score of the other methods tested is 0.80. 9 Among the

9 Note that Ryynanen’s method outputs only integer MIDI notes, so



●

m
el

ot
ra

ns
cr

ip
t

ry
yn

an
en

sm
st

oo
ls

pY
IN

, s
 =

 0

pY
IN

, s
 =

 0
.6

pY
IN

, s
 =

 0
.7

pY
IN

, s
 =

 0
.8

0.6

0.7

0.8

0.9

1.0
R

aw
 P

itc
h 

A
cc

ur
ac

y

● ●
●

m
el

ot
ra

ns
cr

ip
t

ry
yn

an
en

sm
st

oo
ls

pY
IN

, s
 =

 0

pY
IN

, s
 =

 0
.6

pY
IN

, s
 =

 0
.7

pY
IN

, s
 =

 0
.8

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

O
ve

ra
ll 

A
cc

ur
ac

y

●

m
el

ot
ra

ns
cr

ip
t

ry
yn

an
en

sm
st

oo
ls

pY
IN

, s
 =

 0

pY
IN

, s
 =

 0
.6

pY
IN

, s
 =

 0
.7

pY
IN

, s
 =

 0
.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
oi

ci
ng

 F
al

se
 A

la
rm ●

●

●●

●

●
●

m
el

ot
ra

ns
cr

ip
t

ry
yn

an
en

sm
st

oo
ls

pY
IN

, s
 =

 0

pY
IN

, s
 =

 0
.6

pY
IN

, s
 =

 0
.7

pY
IN

, s
 =

 0
.8

0.0

0.2

0.4

0.6

0.8

C
O

nP
O

ff,
 F

 m
ea

su
re

●

●

●

●
●

●

m
el

ot
ra

ns
cr

ip
t

ry
yn

an
en

sm
st

oo
ls

pY
IN

, s
 =

 0

pY
IN

, s
 =

 0
.6

pY
IN

, s
 =

 0
.7

pY
IN

, s
 =

 0
.8

0.2

0.4

0.6

0.8

C
O

nP
 F

, m
ea

su
re

Figure 3: Results of existing algorithms and pYIN note transcription with minimum duration pruning at 0.1 s, showing,
from left to right, raw pitch accuracy, overall accuracy, voicing false alarm, COnPOff F measure and COnP F measure.

pYIN versions tested, the best outcome was achieved by
combining pruning of at least 100 ms and an onset sensi-
tivity parameter of at least s = 0.6. The efficacy of the
system results from high raw pitch accuracy (correct when
there is a pitch), and low rate of voicing false alarm. There
is, however, a tradeoff between the two: better raw pitch
accuracy is achieved with low values of s, and lower false
alarm rates with higher values of s. The algorithm sm-
stools achieves perfect voicing recall at the price of having
the highest voicing false alarm rate.

The results for note-based evaluation expose more sub-
tle differences. The metric “COnPOff” [24], which
takes into account correct note onset time (±5 ms), pitch
(±0.5 semitones) and offset (± 20% of ground truth note
duration), is the most demanding metric; “COnP” (cor-
rect onset and pitch) and “COn” (correct onset) are re-
laxed metrics. Here, we report F measures only. We ob-
serve that—without post-processing—the pYIN note tran-
scription achieves values slightly worse than the best-
performing algorithm (melotranscript). Considering the
post-processed versions of pYIN, minimum duration prun-
ing alone does not lead to substantial improvements. How-
ever, a combination of onset detection and minimum du-
ration pruning leads to COnPOff F values of up to 0.50,
compared to 0.38 for the baseline pYIN and 0.45 for the
best other algorithm (melotranscript). This carries through
to the more relaxed evaluation measures, where F values
of the post-processed versions with at least 0.10 seconds
pruning are always higher than the baseline pYIN algo-
rithm and the other algorithms tested. Figure 3 shows all
100 ms-pruned pYIN results against other algorithms.

5.2 Effort of Manual Note Correction

In order to examine the usability of Tony we measured
how editing affects the time taken to annotate tunes. We
used recordings of amateur singing created for a different
project, and one of us (JD) annotated them such that each
final note annotation corresponded exactly to one ground
truth note in the musical score matching her perception of
the notes the singer was actually performing. The dataset
consists of 96 recordings, with 32 singers performing three
tunes from the musical The Sound of Music. The annota-
tion was performed with an earlier version of Tony (0.6).

for the fine-grained analysis required here it may be at a disadvantage.
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Figure 4: Edit operations.

Tony offers five basic editing operations: Create, Delete,
Split, Join, and Move (either left or right note boundary).
We estimated the number of edits required, considering
only timing adjustments (i.e. ignoring any changes to the
pitch of a note). 10 The estimate is a custom edit distance
implementation. First, we jointly represent the actual state
of the note track (after automatic extraction) and the de-
sired state of the note track as a string of tokens. Secondly,
we define transformation rules that correspond to the five
possible edit operations. The estimate of the number of
edits performed by the user is then an automated calcula-
tion of a series of reductions to the source string in order to
arrive at the target. In particular, if pYIN happened to per-
form a completely correct segmentation “out of the box”,
the edit count would be zero.

Figure 4a illustrates the distributions of edit counts in a
box plot with added indicators of the mean. First of all, we
notice that very few notes had to be Created (mean of 0.17
per recording) or Moved (0.28), and that Join (8.64) and
Delete (8.82) are by far the most frequent edit operations,
followed by Splits (4.73). As expected, the total number of
edits correlates with the time taken to annotate the record-
ings (see Figure 4b).

Which other factors influence the annotation time taken?
We use multivariate linear regression on the number of
Creates, Deletes, Splits, Joins, Moves and familiarity with
the Tony software (covariates), predicting the annotation

10 At the time of the experiment we were not able to record the actual
actions taken.



Est. (seconds) Std. Error p value

(Intercept) 437.20 51.87 <0.01
Creates 145.08 42.77 <0.01
Deletes 3.51 1.82 0.06

Splits 5.58 2.95 0.06
Joins 3.18 2.35 0.18
Move 45.51 39.61 0.25

Familiarity -2.31 0.82 0.01

Table 4: Effects on annotation time taken.

time (response). As expected, the results in Table 4 show
that any type of editing increases annotation time, and that
familiarity reduces annotation time. The baseline annota-
tion time is 437 seconds, more than 7 minutes. (The mean
duration of the pieces is 179 seconds, just under 3 min-
utes.) The result on Familiarity suggests that every day
spent working with Tony reduces the time needed for an-
notation by 2.3 seconds. 11 The time taken for every Cre-
ate action is 145 seconds, a huge amount of time, which
can only be explained by the fact that this operation was
very rare and only used on tracks that were very difficult
anyway. Similar reasoning applies to the (boundary) Move
operations, though the p value suggests that the estimate
cannot be made with much confidence. The distinction
between the remaining three edit operations is more help-
ful: each Delete and Join accounts for 3.5 seconds time
added, but splits take much longer: 5.7 seconds. This is
likely to result from the fact that the user has to position
the play head or mouse pointer precisely at the split po-
sition, whereas joins and deletes require far less precise
mouse actions. As Table 4 shows, most of the effects are at
least moderately significant (p < 0.1), with the exception
of number of Joins. The variance explained is R2 = 25%.

6. DISCUSSION

The results of the second experiment may well have impact
on the design of future automatic melody transcription sys-
tems. They confirm the intuition that some edit actions take
substantially more time for a human annotator to execute.
For example, the fact that Merges are much cheaper than
Splits suggests that high onset recall is more important than
high onset precision.

We would also like to mention that we are aware that the
accuracy of automatic transcription heavily depends on the
material. The tools we evaluated (including existing al-
gorithms) were well-suited for the database of singing we
used; in other annotation experiments [27] it has become
obvious that some instruments are more difficult to pitch-
track. Furthermore, it is useful to bear in mind that the
dataset we used is predominantly voiced, so the voicing
false alarm outcomes may change on different data.

As evident from our survey (Box 1), early versions of
Tony have already been used by the community. This in-
cludes our own use to create the MedleyDB resource [27],
and some as yet unpublished internal singing intonation
and violin vibrato experiments.

11 This is clearly only true within a finite study, since the reduction
cannot continue forever. Annotations happened on 14 different days.

7. CONCLUSIONS

In this paper we have presented our new melody annota-
tion software Tony, and its evaluation with respect to two
aspects: firstly, an evaluation of the built-in note transcrip-
tion system, and secondly a study on how manual edits and
familiarity with the software influence annotation time.

The note transcription results suggest that the pYIN note
transcription method employed in Tony is state-of-the-art,
in terms of frame-wise accuracy and note-based evalua-
tion. The study of manual edits shows the relative effort
involved in different actions, revealing that Splits and Cre-
ates are particularly expensive edits. This suggests that for
the task of note annotation, transcription systems should
focus on voicing recall and note onset/offset accuracy.

In summary, we have presented a state-of-the-art note
annotation system that provides researchers interested in
melody with an efficient way of annotating their record-
ings. We hope that in the long run, this will create a surge
in research and hence understanding of melody and into-
nation, especially in singing.
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A. SURVEY QUESTIONS

• Have you ever used software to annotate pitch in au-
dio recordings? (multiple choice)

• What software tools/solutions for pitch annotation
exist? List tools that you are aware of. (free text)

• What characteristics of the tools would need to be
improved to better suit your use case? (free text)

• Comments (free text)
• Your field of work (multiple choice)

B. REFERENCES

[1] S. Pant, V. Rao, and P. Rao, “A melody detection user
interface for polyphonic music,” in National Confer-
ence on Communications (NCC 2010), 2010, pp. 1–5.
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