
Myths and truths of software development

Chris Cannam, Queen Mary University of London

Greg Wilson, Software Carpentry

Steve Crouch, Software Sustainability Institute

Centre for Intelligent Sensing

Queen Mary University of London



or, what do we know

about the practice of 

software development?

(Less than you might hope!)



Computer science

1. Study of how computers work,

the principles of logic and computation

2. Some largely unscientific ideas

about how to write programs



[citation needed]

Don’t trust experts, experienced developers,

yourself, or me



What does experience count for?

“Programmers were asked several questions about their 

previous programming experience… number of years of 

programming experience, total amount of program code 

written, size of largest program ever written…

“None of these questions had any substantial predictive 

value for any aspect of programmer performance in the 

experiment.”

Prechelt, 2003



Theory and evangelism

“That is why (framework) is so useful; you can do 

absolutely anything that you want with it”

“… designed to make programmers happy, and it shows”

“… allows you to do rapid development, and scales to fit”

“I don’t know why one would start a new project in a 

language that didn’t support (feature)”



What passes for evidence 

“The best programmers are up to 28 times more 

productive than the worst”



What passes for evidence 

“The best programmers are up to 28 times more 

productive than the worst”

… in a study comparing batch-processing against 

interactive systems, using twelve programmers, for 

one afternoon, over 40 years ago

Sackman, Erikson and Grant, 1968



What do we know?

We know some things about working practices



Working together

• Physical distance doesn’t matter

• Distance in the organisational structure does

Nagappan et al, 2007; Bird et al, 2009



Working hours & “crunch mode”

8-hour days (a 40-hour week) produce more output than

9-hour days (a 45-hour week)

• Crunch mode: going from 40 to 60+ hours a week

– Initial increase in output

– Drop-off is obvious within a week

– By two months, you’d have been better off with 40-hour weeks all 

along

Abbe, 1908; Robinson, 2005



US Army study

“After circa 24 hours [without sleep] they… no longer knew 

where they were, relative to friendly and enemy units.

“They no longer knew what they were firing at.

“Early in the simulation, when we called for simulated fire on 

a hospital, etc., the team would check [and] refuse the 

request. Later on, they would fire without hesitation 

regardless of the nature of the target”

Belenky, 1997



Processes and human error

Problems in enterprise datacentres,

as reported to IDC survey



Automate everything but craft

Mistrust yourself in repetitive tasks!



Tools matter



Higher-level languages work

The length of the source code is a predictor of development 

time, roughly independent of language

Prechelt and Unger, 1999

No current metric is better for defect prediction than lines of 

code

Herraiz and Hassan, 2010

Variation in run time and memory use due to different 

programmers is larger than that due to different languages

Prechelt, 2003



Short functions and working memory

Working memory: more or less 7 “things” at once

Weinberg, 1971; Miller, 1956

• The more you have to remember while reading or 

writing code, the harder it is for you to follow and the 

less likely to be correct

• Write code for other humans to read – the computer 

can read anything, it’s humans who matter



Errors appear early and 

are costly later



Errors appear early and cost later

Most errors appear during requirements analysis 

and design

The later an error is detected the more costly it is 

to address

– 1 hour to fix in the design

– 10 hours to fix in the code

– 100 hours to fix after it’s gone live

40% of development time is error removal

Boehm et al. 1975; Glass, 1992

time

n
u
m

b
e
r

/ 
c
o
s
t



Differing approaches

Traditional: “If we take more care at the design stage, 

fewer bugs will get to the expensive part of the fixing 

curve”

Agile: “If we do lots of short iterations, the total cost of 

fixing bugs will go down”



Misunderstandings and misdesigns

30% of errors that survived through to production 

software were caused by “missing code”, e.g. 

conditionals where only one branch had been written

(This was the biggest single cause of errors. 

Regressions were second, at 8.5%)

Glass, 1981



More missing code

92% of catastrophic failures resulted from “incorrect 

handling of non-fatal errors [that had been] explicitly 

signalled in software”

Yuan et al, 2014



Bugs are social creatures

Errors tend to cluster:

Half the errors are found in 15% of the modules

Davis, 1995; Endres, 1975

About 80% of the defects come from 20% of the modules,

and about half the modules are error free

Boehm and Basili, 2001

When you find errors in one place, watch out for more!



Rapid feedback

Learn about your mistakes as early as possible 















Read and share



Reading and code reviews

Inspections can remove 60-90% of errors before the 

first test is run

Fagan, 1975

Training developers in “how to read code” makes a 

substantial difference to the number of errors found 

during code reviews (compared with more formal 

techniques)

Rifkin and Deimel, 1995



Code reviews: not so demanding



Review of “obvious” problems

“In 23% of the catastrophic failures, the error handling 

logic of a non-fatal error was so wrong that any statement 

coverage testing or more careful code reviews by the 

developers would have caught the bugs”

Yuan et al, 2014



We often don’t like to share

• Survey of papers in economics journal

with a data and code archive policy:

• 9 empirical articles

McCullough, 2007



We often don’t like to share

• Survey of papers in economics journal

with a data and code archive policy:

• 9 empirical articles

– 7 had empty entries in the journal archive!

McCullough, 2007



We often don’t like to share

• Survey of papers in economics journal

with a data and code archive policy:

• 9 empirical articles

– 7 had empty entries in the journal archive!

– The other two had code, but it didn't work!

– None of them could be replicated without authors' help

McCullough, 2007



Hmmm

J M Wicherts, M Bakker and D Molenaar,

Willingness to Share Research Data Is Related to the 

Strength of the Evidence and the Quality of Reporting of 

Statistical Results, 2011



SoundSoftware survey 2010–2011



SoundSoftware survey 2010–2011



SoundSoftware survey 2010–2011



SoundSoftware survey 2010–2011



Learn to read!

You don’t just go out and write War and Peace

– You’d read other skilled writers first

You don’t just go out and write a foreign language

– You learn to read it first



…and prepare to share

Coding with readers in mind makes it

– easier to write comments you'll understand later

– easier to write testable code, and to write tests for it

– easier to do code reviews

– and easier to contemplate publishing



Further reading

“Best Practices for Scientific Computing” – Wilson et al. 

http://arxiv.org/abs/1210.0530

“Facts and Fallacies of Software Engineering” – Robert L 

Glass

“Making Software” – edited by Oram and Wilson 

See also http://software-carpentry.org



And finally

Get into good habits early!

It’s too easy to cling to bad ones


